Genome-enabled prediction using probabilistic neural network classifiers
نویسندگان
چکیده
منابع مشابه
Sequence Prediction Using Neural Network Classifiers
Being able to guess the next element of a sequence is an important question in many fields. In this paper we present our approaches used in the Sequence Prediction ChallengE (SPiCe), whose goal is to compare the different approaches to that problem on the same datasets. We model sequence prediction as a classification problem and adapt three different neural network models to tackle it. The exp...
متن کاملPairwise Neural Network Classifiers with Probabilistic Outputs
Multi-class classification problems can be efficiently solved by partitioning the original problem into sub-problems involving only two classes: for each pair of classes, a (potentially small) neural network is trained using only the data of these two classes. We show how to combine the outputs of the two-class neural networks in order to obtain posterior probabilities for the class decisions. ...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملProbabilistic Neural Network Training for Semi-Supervised Classifiers
In this paper, we propose another version of help-training approach by employing a Probabilistic Neural Network (PNN) that improves the performance of the main discriminative classifier in the semi-supervised strategy. We introduce the PNN-training algorithm and use it for training the support vector machine (SVM) with a few numbers of labeled data and a large number of unlabeled data. We try t...
متن کاملPrediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Genomics
سال: 2016
ISSN: 1471-2164
DOI: 10.1186/s12864-016-2553-1